miércoles, 16 de junio de 2010
Cómo Aprende la Gente:
Los estudiantes llegan al aula con concepciones previas acerca de cómo funciona el mundo. Si no se incorpora al estudio esta comprensión inicial, es posible que ellos no asimilen los nuevos conceptos e información que se les están enseñando; o puede suceder que los aprendan para responder un examen, pero que, fuera del aula, regresen a sus concepciones previas.
La investigación del aprendizaje inicial sugiere que el proceso de darle sentido al mundo comienza a una edad muy temprana. Los niños, durante los años preescolares, comienzan a construir comprensiones refinadas (sean exactas o no) de los fenómenos que ocurren en su entorno (Wellman, 1990). Esas comprensiones iniciales pueden tener un efecto poderoso en la integración de los nuevos conceptos e información. A veces esas comprensiones son exactas y proporcionan una base para la construcción del conocimiento. Pero a veces son inexactas (Carey y Gelman, 1991). En las ciencias, los estudiantes, con frecuencia, tienen concepciones erróneas de propiedades físicas que no pueden observarse con facilidad. En las humanidades, es frecuente que sus concepciones previas incluyan estereotipos o simplificaciones, como cuando la historia se entiende como una lucha entre tipos buenos y tipos malos (Gardner, 1991). Un rasgo crítico de la enseñanza eficaz es que ella saca a flote la comprensión previa que los estudiantes tienen de la materia de estudio que se va a enseñar, y les ofrece oportunidades para construir a partir de ella --o la pone a prueba. James Minstrell, un profesor de física de enseñanza media, describe el proceso de la siguiente manera (Minstrell, 1989:130-131):
Las ideas iniciales de los estudiantes acerca de la mecánica son como hilazas: unas sueltas, otras flojamente entretejidas. El acto de la instrucción puede verse en términos de ayudar a los estudiantes a desenredar hebras de creencia, rotularlas y luego tramarlas en un tejido de comprensión más completa. En lugar de negar la pertinencia de una creencia, los maestros harían una mejor labor si les ayudaran a los estudiantes a ver las diferencias que existen entre sus ideas del momento y las creencias conceptuales más parecidas a las de los científicos, y a integrarlas dentro de éstas.
Las concepciones del mundo que los niños traen al aula pueden ser ya bastante poderosas en los años iniciales. Por ejemplo, se ha encontrado que algunos niños se aferran a su concepción previa de una tierra plana, e imaginan una tierra redonda que tiene la forma de un panqueque (o tortica) (Vosniadou y Brewer, 1989). Esta construcción de una nueva comprensión está guiada por un modelo de la tierra que le ayuda al niño a explicar cómo puede la gente pararse o caminar en su superficie. Muchos niños de poca edad tienen dificultad para dejar a un lado la noción de que un octavo es mayor que un cuarto, porque 8 es mayor que 4 (Gelman y Gallistel, 1978). Si los niños fueran tabulas rasas, sería adecuado decirles que la tierra es redonda o que un cuarto es mayor que un octavo. Pero puesto que ellos ya tienen ideas acerca de la tierra y acerca de los números, aquellas ideas deben confrontarse directamente para transformarlas o para ampliarlas.
Sacar conclusiones y trabajar con comprensiones preexistentes son realizaciones importantes para aprendices de todas las edades. Numerosos experimentos de investigación demuestran la persistencia de comprensiones preexistentes entre estudiantes mayores, aun después de que se ha enseñado un nuevo modelo que contradice la visión del mundo ingenua. Por ejemplo, en un estudio de estudiantes de física de universidades selectas, tecnológicamente orientadas, Andrea Di Sessa (1982) instruyó a los sujetos para ejecutar un juego computarizado que requería que ellos dirigieran un objeto simulado por computador y llamado dinatortuga para que diera en el blanco, y lo hiciera a una velocidad mínima al momento del impacto. A los participantes se les explicó el juego y se les permitió, antes de comenzar su actuación, hacer un ensayo manual consistente en aplicar unos pocos golpecitos con un pequeño mazo de madera a una bola de tenis, sobre una mesa. El mismo juego fue ejecutado también por niños de educación elemental. DiSessa halló que ambos grupos de estudiantes fallaron lamentablemente. Para tener éxito se hubiera requerido demostrar comprensión de las leyes del movimiento, de Newton. A pesar de su entrenamiento, los estudiantes universitarios de física, al igual que los niños de educación elemental, dirigieron la dinatortuga directamente al objetivo, sin tomar en cuenta el ímpetu. La investigación posterior de una estudiante universitaria que participó en el estudio reveló que ella sabía las propiedades y fórmulas físicas, pero, en el contexto del juego, retrocedió a su concepción ingenua de cómo funciona el mundo físico.
Estudiantes de diversas edades persisten en sus creencias de que las estaciones son causadas por la distancia de la tierra al sol, y no por la inclinación de la tierra (Schneps y Sadler, 1987); o que, sobre un objeto que haya sido lanzado al aire, actúan tanto la fuerza de gravedad como la fuerza de la mano, a pesar de que se les haya enseñado algo diferente (Clement, 1982). Para que la comprensión científica reemplace a la visión ingenua, los estudiantes deben hacer manifiesta la última y tener la oportunidad de ver en qué es insuficiente.
Para desarrollar la competencia en un área de investigación, los estudiantes deben: (a) tener una base profunda de saberes factuales; (b) comprender hechos e ideas en el contexto de un marco conceptual; y (c) organizar los saberes en formas que faciliten el acceso a ellos y su aplicación.
Este principio surge de la investigación que compara el desempeño de expertos con el de novatos, y de la investigación sobre el aprendizaje y la transferencia. Los expertos, independientemente del campo, siempre apelan a una base de información ricamente estructurada; no son simplemente "buenos pensadores" o "gente despierta". La habilidad para planear una tarea, para reconocer patrones, para generar argumentos y explicaciones razonables, y para establecer analogías con otros problemas está imbricada con el saber factual, más de lo que alguna vez se haya creído.
Pero no basta el conocimiento de un gran conjunto de datos desconectados. Para desarrollar la competencia en una área de investigación, los estudiantes deben tener oportunidades de aprender con comprensión. La comprensión profunda de la materia de estudio transforma la información factual en saber utilizable. Una diferencia bien marcada entre expertos y novatos es que el dominio que los expertos tienen de los conceptos da forma a su comprensión de la información nueva: les permite ver patrones, relaciones o discrepancias que no son aparentes para los novatos. Ellos no necesariamente tienen mejores memorias globales que otras personas. Pero su comprensión conceptual les permite recuperar un nivel de significación, de la información, que no es aparente para los novatos; y esto les ayuda a seleccionar y recordar información pertinente. Los expertos también pueden acceder con agilidad a conocimientos pertinentes, porque su comprensión de la materia les permite identificar rápidamente lo que es pertinente. En consecuencia, su atención no se recarga con eventos complejos.
En la mayoría de áreas de estudio en la educación de Kinder a Grado 12, los estudiantes comenzarán como novatos; tendrán ideas informales acerca de la materia de estudio, y cambiarán en la cantidad de información que han adquirido. La empresa de la educación puede verse como una en la que se conduce a los estudiantes en la dirección de una comprensión más formal (o mayor experticia). Esto requerirá tanto de una profundización de la base de información como del desarrollo de un marco conceptual para esa materia de estudio.
La geografía puede utilizarse para ilustrar la manera en que la experticia se organiza alrededor de principios que sustentan la comprensión. Un estudiante puede aprender a llenar un mapa con los respectivos nombres de lugares, mediante la memorización de estados, ciudades, países, etc., y puede completar la tarea con un alto nivel de exactitud. Pero si se borran las fronteras, el problema se hace mucho más difícil. La información del estudiante no está apoyada en conceptos. Un experto que comprende que, con frecuencia, las fronteras se desarrollaron porque los fenómenos naturales (como las montañas o las masas de agua) separaron a la gente; y que las grandes ciudades, con frecuencia, surgieron en lugares que permitían el comercio (a lo largo de ríos, grandes lagos y en puertos costeros) fácilmente superará al novato. Mientras más desarrollada sea la comprensión conceptual de las necesidades de las ciudades y de la base de los recursos que atrajeron a la gente hacia ellas, más significativo se hace el mapa. Los estudiantes pueden hacerse más expertos si la información geográfica que se les enseña se ubica en el marco conceptual apropiado.
Un hallazgo clave, en la literatura del aprendizaje y la transferencia, es que la organización de la información en un marco conceptual permite una mayor "transferencia"; es decir, le permite al estudiante aplicar a nuevas situaciones lo que ha aprendido, y aprender más rápido información relacionada (ver Cuadro 1.3). El estudiante que ha aprendido, en un marco conceptual, información geográfica para las Américas, emprende la tarea de aprender la geografía de otra parte del globo con preguntas, ideas y expectativas que ayudan a guiar la adquisición de la nueva información. La comprensión de la importancia geográfica del Río Mississippi monta el escenario para que el estudiante comprenda la importancia geográfica del Nilo. Y, a medida que se refuerzan los conceptos, el estudiante transferirá el saber más allá del aula, observando e indagando, por ejemplo, acerca de los rasgos geográficos que ayuden a explicar la ubicación y tamaño de una ciudad que visite (Holyoak, 1984; Novick y Holyoak, 1991).
Un enfoque "metacognitivo" de la instrucción puede ayudar a los estudiantes a aprender a asumir el control de su propio aprendizaje, por medio de la definición de metas, y de la permanente vigilancia de su progreso hacia el logro de ellas.
En una investigación con expertos a quienes se les pidió que comunicaran su pensamiento mientras trabajaban, se reveló que ellos vigilaban cuidadosamente su propia comprensión, tomando nota de cuándo se requería información adicional para comprender, de si la información nueva era consistente con lo que ya ellos sabían, y qué analogías podrían establecerse que pudieran ayudar a profundizar en su comprensión. Estas actividades de rastreo metacognitivo son un importante componente de lo que se llama experticia de adaptación (Hatano e Inagaki, 1986).
Lanzando dardos bajo el agua
En uno de los más famosos estudios iniciales en los que se comparan los efectos de aprender un procedimiento, con [los efectos de] el aprendizaje con comprensión, dos grupos de niños lanzaron dardos a un blanco bajo el agua (descrito en Judd, 1908; véase una réplica conceptual por Hendrickson y Schroeder, 1941). Un grupo recibió una explicación acerca de la refracción de la luz, la que hace que la ubicación del blanco sea engañosa. El otro grupo solamente lanzó dardos, sin que recibieran la explicación. Los dos grupos tuvieron igual desempeño en la tarea de práctica, que tenía que ver con un blanco a 12 pulgadas bajo el agua. Pero el grupo al que se le había dado la instrucción acerca del principio abstracto tuvo un desempeño mucho mejor cuando tuvo que pasar a una situación en la que el blanco estaba a solamente 4 pulgadas bajo el agua. Como había comprendido lo que estaba haciendo, el grupo que había recibido instrucción acerca de la refracción de la luz pudo acomodar su comportamiento a la nueva tarea.
Como la metacognición frecuentemente toma la forma de una conversación interior, fácilmente puede darse por sentado que los individuos desarrollarán el diálogo interior por sí solos. Sin embargo, muchas de las estrategias que nosotros empleamos para pensar reflejan normas culturales y métodos de investigación (Hutchins, 1995; Brice-Heath, 1981, 1983; Suina y Smolkin, 1994). La investigación ha demostrado que a los niños pueden enseñárseles estas estrategias, entre las que se incluyen la habilidad para predecir resultados, ensayar sus propias explicaciones para mejorar la comprensión, detectar las fallas de comprensión, activar saberes acumulados, planear con anticipación y administrar el tiempo y la memoria. La enseñanza recíproca, por ejemplo, es una técnica diseñada para mejorar la comprensión de lectura de los estudiantes, técnica mediante la cual se les ayuda a explicar, elaborar y controlar su comprensión al leer (Palincsar y Brown, 1984). El modelo para emplear las estrategias metacognitivas es planteado inicialmente por el profesor; y los estudiantes practican y discuten las estrategias a medida que aprenden a usarlas. Al final, los estudiantes pueden ser sus propios consuetas y controlar su comprensión sin la ayuda del profesor.
La enseñanza de actividades metacognitivas debe incorporarse en la materia académica que los estudiantes están aprendiendo (White y Frederickson, 1998). Estas estrategias no son genéricas para todas las materias. Tratar de enseñarlas de manera genérica puede llevar a una ausencia de transferencia. Se ha demostrado que enseñar estrategias metacognitivas en contexto mejora la comprensión en la física (White y Frederickson, 1998), en la composición escrita (Scardamalia et al., 1984), y en métodos heurísticos para la solución de problemas (Schoenfeld, 1983, 1984, 1991). Y se ha demostrado que las prácticas metacognitivas incrementan el nivel en que los estudiantes transfieren su conocimiento a nuevos escenarios y acontecimientos (Lin y Lehman, próximo a ser publicado; Palincsar y Brown, 1984; Scardamalia et al., 1984; Schoenfeld, 1983, 1984, 1991).
Cada una de estas técnicas comparte una estrategia de enseñanza y modelado del proceso de generación de enfoques alternos (al desarrollo de una idea por escrito o una estrategia para resolver problemas en matemáticas), de la evaluación de sus méritos para contribuir al logro de un objetivo, y de la vigilancia del progreso en la consecución de esa meta. Se hace uso de discusiones en clase como apoyo del desarrollo de destrezas, con lo que se apunta al logro de la independencia y la autorregulación
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario